NQL query examples
Glossary
Description | |
---|---|
field | Key-value pair, a way of storing information, e.g. name=John. In special cases, it is allowed to store an empty value in the field. It is not possible to create a field with an empty/undefined key. The value of the field for a specific data type. |
object | A collection of fields that form the basic unit of data storage. It has mandatory/system fields. A blank document has only mandatory/system fields. |
collection | A logical container for storing objects. The collection can be empty or it can be distributed. Provides an interface for querying, adding/deleting/modifying documents regardless of their internal organization. |
input collection | A collection of objects (input objects) that is passed to the command. |
output collection | A collection of objects (output objects) that is the result of executing a command. |
stream | Data source. Generates (on demand or continuously) a sequence of objects (collection) of a specific type (origin). |
command | Processes a set of data (collections) coming from the input and passes the output result. Commands can be more than one and can form a so-called pipe: source1 | command1 | command2 | .... commandN. Each command has an input and an output of data (collections). The input of a command is a sequence of input objects (collection) which are the result (output) of the previous command or stream. The result of a command is a collection of output objects. A special type of command is a stream, which has only an output. |
pipe (nql) | A sequence of commands that processes collections of objects. A pipeline is defined by an nql expression. |
Example 1
Scenario
Select the ten oldest people in the IT
department and display the full names of these people.
NQL Query
src stream="testdata" | set fullName = concat(fName, lName, delimiter=",") | where dep="IT" | aggr fName=first(fName), lName=first(lName), ctry=first(ctry), age=first(age), docs=first(docs), host=first(host), PD=max(PD), Balance=max(balance) by fullName | sort age desc | limit 10
Description
Below is a step-by-step explanation of the NQL Query.
- records
Get the objects from the test database.
Result:
{
"fName": "Jake",
"lName": "White",
"dep": "HR",
"ctry": "DE",
"age": 56,
"host": "www.facebook.com",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526346,
"ts": 1673755017972,
"balance": 9966.23
},
{
"fName": "Jack",
"lName": "Magenta",
"dep": "HR",
"ctry": "PL",
"age": 27,
"host": "pl.wikipedia.org",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"ts": 1674845669100,
"balance": 5556.47
},
{
"fName": "Harry",
"lName": "Watermelon",
"dep": "HR",
"ctry": "US",
"age": 49,
"host": "www.google.com",
"docs": [
"Passport"
],
"PD": 0.3029903276018222,
"ts": 1673763725949,
"balance": 7404.62
},
{"...":"..."}
- concat
Add a new field containing first and last names separated by a comma.
set fullName = concat(fName, lName, delimiter=",")
Result:
{
"fName": "Jake",
"lName": "White",
"dep": "HR",
"ctry": "DE",
"age": 56,
"host": "www.facebook.com",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526346,
"ts": 1673755017972,
"balance": 9966.23,
"fullName":"Jake,White"
},
{
"fName": "Jack",
"lName": "Magenta",
"dep": "HR",
"ctry": "PL",
"age": 27,
"host": "pl.wikipedia.org",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"ts": 1674845669100,
"balance": 5556.47,
"fullName":"Jake,Magenta"
},
{
"fName": "Harry",
"lName": "Watermelon",
"dep": "HR",
"ctry": "US",
"age": 49,
"host": "www.google.com",
"docs": [
"Passport"
],
"PD": 0.3029903276018222,
"ts": 1673763725949,
"balance": 7404.62,
"fullName":"Harry,Watermelon"
},
{"...":"..."}
- where
Select only those people who belong to the IT
department.
where dep="IT"
Result:
{
"lName": "Blue",
"fName": "Jack",
"dep":"IT",
"docs": [
"Passport"
],
"PD": 0.8441553273619709,
"ctry": "PL",
"host": "www.linkedin.com",
"balance": 8899.6,
"age": 60,
"fullName" : "Jack,Blue"
},
{
"lName": "Yellow",
"fName": "Jacob",
"dep":"IT",
"docs": [
"IDCard",
"Passport"
],
"PD": 0.8416937579622111,
"ctry": "IE",
"host": "www.google.com",
"balance": 9376.34,
"age": 60,
"fullName" : "Jacob,Yellow"
}
,
{"...":"..."}
aggr
The data contains several values of the
Balance
andPD
fields for a person at differentts
times. In this example, only one object for each person will be displayed. To do this, you need to aggregate the data by full name (fullName
field), taking the maximum values of theBalance
andPD
fields. The value of the fullName field by which the aggregation will be done will be stored in the aggregation field_id
.
aggr fName=first(fName), lName=first(lName), ctry=first(ctry), age=first(age), docs=first(docs), host=first(host), PD=max(PD), Balance=max(balance) by fullName
Result:
{
"lName": "Blue",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.8441553273619709,
"ctry": "PL",
"host": "www.linkedin.com",
"balance": 8899.6,
"_id": [
"Jack,Blue"
],
"age": 60
},
{
"lName": "Yellow",
"fName": "Jacob",
"docs": [
"IDCard",
"Passport"
],
"PD": 0.8416937579622111,
"ctry": "IE",
"host": "www.google.com",
"balance": 9376.34,
"_id": [
"Jacob,Yellow"
],
"age": 60
},
{"...":"..."}
sort
Sort the results by the age of the people starting with the oldest (desc).
sort age desc
limit
Select the first ten people from a previously sorted list.
limit 10
Result:
[
{
"lName": "Blue",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.8441553273619709,
"ctry": "PL",
"host": "www.linkedin.com",
"balance": 8899.6,
"_id": [
"Jack,Blue"
],
"age": 60
},
{
"lName": "Yellow",
"fName": "Jacob",
"docs": [
"IDCard",
"Passport"
],
"PD": 0.8416937579622111,
"ctry": "IE",
"host": "www.google.com",
"balance": 9376.34,
"_id": [
"Jacob,Yellow"
],
"age": 60
},
{
"lName": "Copper",
"fName": "Olive",
"docs": [
"IDCard",
"Passport"
],
"PD": 0.8762584426876398,
"ctry": "IE",
"host": "www.linkedin.com",
"balance": 8586.93,
"_id": [
"Olive,Copper"
],
"age": 59
},
{
"lName": "Cinnamon",
"fName": "Neil",
"docs": [
"Passport"
],
"PD": 0.9939145170408105,
"ctry": "DE",
"host": "www.google.com",
"balance": 8096.58,
"_id": [
"Neil,Cinnamon"
],
"age": 57
},
,
{"...":"..."}
]
Example 2
Scenario
For each person, display the current balance along with the date from which this balance is valid.
NQL Query method 1
src stream="testdata" | sort ts desc | aggr latestBalance=first(balance),latestPD=first(PD) by fName, lName unwind=true
Description
Below is a step-by-step explanation of the NQL Query.
sort
Sort collections by
ts
field from the largest value (desc).
sort ts desc
aggr
Select the values of the
Balance
andPD
fields from the first object found from the aggregated data by thefName
andlName
fields. The previous command sorted the values byts
in descending order, so if in this step you select the value of theBalance
field andPD
field from the first object encountered, these will be the values for the maximumts
, i.e. the last ones.
aggr latestBalance=first(balance),latestPD=first(PD) by fName, lName unwind=true
Result:
[
{
"lName": "Amber",
"fName": "Matt",
"latestBalance": 8540.07,
"latestPD": 0.3231355816784073
},
{
"lName": "Olive",
"fName": "William",
"latestBalance": 595.67,
"latestPD": 0.6249965829144613
},
{
"lName": "Magenta",
"fName": "Jack",
"latestBalance": 3772.04,
"latestPD": 0.2969195237000811
},
{
"lName": "Ruby",
"fName": "Paul",
"latestBalance": 4879.27,
"latestPD": 0.006748252054172954
},
{
"lName": "Yellow",
"fName": "Richard",
"latestBalance": 4011.64,
"latestPD": 0.5387816649690332
},
{"...":"..."}
]
NQL Query method 2
Sequence of three NQLs:
src stream="testdata" | dst "collTestData"
coll "collTestData" | fork ( set fullName=concat(fName, " ", lName) | dst "data3"), ( aggr latestTs=max(ts)by fName, lName unwind=true | dst "data4")
coll "data3" | set latestTs=valColl("data4", "latestTs", {"fName":fName, "lName":lName}) | where $eq(latestTs,ts) | sort fullName
Description
Below is a step-by-step explanation of the NQL Query.
- dst
collTestData
Prepare a collector with test data.
Result:
[
{
"lName": "White",
"fName": "Jake",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526344,
"ctry": "DE",
"host": "www.facebook.com",
"balance": 9966.23,
"dep": "HR",
"age": 56,
"ts": 1673755017972
},
{
"lName": "Magenta",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"ctry": "PL",
"host": "pl.wikipedia.org",
"balance": 5556.47,
"dep": "HR",
"age": 27,
"ts": 1674845669100
},
...
]
- coll
collTestData
Get the test data from the collTestData
collector
- fork
Execute two NQLs in parallel.
3.1 set, dst
Add a new fullName
field which is a composite of the values of the fields: Name
, " "
(space) and Name
.
Store the result to a collector with "data3" id .
Result:
[
{
"lName": "White",
"fName": "Jake",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526344,
"ctry": "DE",
"host": "www.facebook.com",
"balance": 9966.23,
"dep": "HR",
"age": 56,
"ts": 1673755017972,
"fullName": "Jake White"
},
{
"lName": "Magenta",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"ctry": "PL",
"host": "pl.wikipedia.org",
"balance": 5556.47,
"dep": "HR",
"age": 27,
"ts": 1674845669100,
"fullName": "Jack Magenta"
},
...
]
3.2 aggr, dst
Calculate the maximum timestamp (latestTs
) for each person and store the result in the collector with "data4" id.
Result:
[
{
"lName": "White",
"fName": "Jake",
"latestTs": 1675018088389
},
{
"lName": "Magenta",
"fName": "Jack",
"latestTs": 1675201265593
},
{
"lName": "Watermelon",
"fName": "Harry",
"latestTs": 1674670980569
},
...
]
- coll "data3"
Get the test data from the "data3" collector .
- set, valColl
To all objects from the "data3" collector add the latestTs
field of which the value is taken for each person from the "data4" collector .
Result:
[
{
"lName": "White",
"fName": "Jake",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526344,
"ctry": "DE",
"host": "www.facebook.com",
"balance": 9966.23,
"dep": "HR",
"age": 56,
"ts": 1673755017972,
"fullName": "Jake White",
"latestTs": null
},
{
"lName": "Magenta",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"ctry": "PL",
"host": "pl.wikipedia.org",
"balance": 5556.47,
"dep": "HR",
"age": 27,
"ts": 1674845669100,
"fullName": "Jack Magenta",
"latestTs": null
},
...
]
- where
From the previously prepared set of objects (people), select only those for which latestTs
equals ts
.
These are the objects containing the most recent (latest) PD
and balance
values.
- sort
Sort the result.
Result:
[
{
"lName": "Amber",
"fName": "Connor",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.48863820141709124,
"ctry": "IE",
"host": "www.linkedin.com",
"balance": 1440.24,
"dep": "ADM",
"age": 24,
"ts": 1675165590523,
"fullName": "Connor Amber",
"latestTs": 1675165590523
},
{
"lName": "Green",
"fName": "Connor",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.5409617064298299,
"ctry": "IE",
"host": "www.google.com",
"balance": 5851.46,
"dep": "ADM",
"age": 31,
"ts": 1674903306796,
"fullName": "Connor Green",
"latestTs": 1674903306796
},
...
]
Example 3
Scenario
Add a new fullName
field to all objects, sort and display them and perform data aggregation in parallel. To do this, perform three NQLs.
NQL Query
src stream="testdata" | dst "collTestData"
coll "collTestData" | fork (set fullName=concat(fName, " ", lName) | limit 100 | dst "collData1"), ( aggr fieldsCount=sum(age) by fName,lName maxBuckets=2 | dst "collData2")
coll "collData1" | sort fullName
Description
Below is a step-by-step explanation of the NQL Query.
dst
Store all objects from
testdata
in a new collector with thecollTestData
identifier.
Result:
[
{
"lName": "White",
"fName": "Jake",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526344,
"balance": 9966.23,
"ctry": "DE",
"host": "www.facebook.com",
"dep": "HR",
"age": 56,
"ts": 1673755017972
},
{
"lName": "Magenta",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"balance": 5556.47,
"ctry": "PL",
"host": "pl.wikipedia.org",
"dep": "HR",
"age": 27,
"ts": 1674845669100
},
...
]
coll
The previously created
collTestData
data collector is the data source for the next step NQL.fork
On the data from the
collTestData
collector perform two NQLs in parallel:set...
andaggr...
. Each of them stores its results in the newly createdcollData1
andcollData1
collectors.
Result for set...
stored in collData1
collector:
[
{
"lName": "White",
"fName": "Jake",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526344,
"balance": 9966.23,
"ctry": "DE",
"host": "www.facebook.com",
"dep": "HR",
"age": 56,
"ts": 1673755017972,
"fullName": "Jake White"
},
{
"lName": "Magenta",
"fName": "Jack",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"balance": 5556.47,
"ctry": "PL",
"host": "pl.wikipedia.org",
"dep": "HR",
"age": 27,
"ts": 1674845669100,
"fullName": "Jack Magenta"
},
...
]
Result for aggr...
stored in collData2
collector:
[
{
"fieldsCount": 560,
"_id": [
"Jake",
"White"
]
},
{
"fieldsCount": 270,
"_id": [
"Jack",
"Magenta"
]
}
]
coll
The result of the NQL ("set...") from the previous step stored in the
collData1
collector is the data source for the next NQL.sort
Sort the data from the
collData1
collector and display the result.
Result:
[
{
"fName": "Connor",
"lName": "Amber",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.7200228784043261,
"balance": 1118.7,
"ctry": "IE",
"host": "www.linkedin.com",
"dep": "ADM",
"age": 24,
"ts": 1673615235896,
"fullName": "Connor Amber"
},
{
"fName": "Connor",
"lName": "Green",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.8421159777008483,
"balance": 7882.33,
"ctry": "IE",
"host": "www.google.com",
"dep": "ADM",
"age": 31,
"ts": 1673976067457,
"fullName": "Connor Green"
},
...
]
In this example, the data from the aggregation is ignored in further processing and not displayed at the end.
Example 4
Scenario
Calculate the average value of a person's balance and add it to each person object in the source table.
NQL Query
src stream="testdata" | aggr avgBalance=avg(balance) by fName, lName unwind=true | dst "avgBalanceColl"
src stream="testdata" | set avgBalance=valColl("avgBalanceColl", "avgBalance", {"fName":fName, "lName":lName})
Description
Below is a step-by-step explanation of the NQL Query.
Calculate the average balance value for a person and save it in the
avgBalance
field.Save the results to the collector with the
avgBalanceColl
id.For each person from the
testdata
collection, add theavgBalance
field whose value is taken from theavgBalanceColl
collector from theavgBalance
field of the object selected in this collector after the filteravgBalanceColl.fName = testdata.fName and avgBalanceColl.lName = testdata.lName
.
[
{
"fName": "Jake",
"lName": "White",
"dep": "HR",
"country": "DE",
"age": 56,
"host": "www.facebook.com",
"docs": [
"IDCard",
"Passport",
"DrivingLicense"
],
"PD": 0.43859708144526344,
"ts": 1673755017972,
"balance": 9966.23,
"avgBalance": 6849.086
},
{
"fName": "Jack",
"lName": "Magenta",
"dep": "HR",
"country": "PL",
"age": 27,
"host": "pl.wikipedia.org",
"docs": [
"Passport"
],
"PD": 0.511210222043333,
"ts": 1674845669100,
"balance": 5556.47,
"avgBalance": 4675.839
}
...
]
Example 5 (real data from the network)
Display five IP clients for which there is the most data.
src stream="netflow" | isIp(clientIp) | aggr countClientIp=count(clientIp) by clientIp as client unwind=true | sort countClientIp desc | limit 5
Description
Below is a step-by-step explanation of the NQL Query.
- Get the data from the netflow stream.
Result (first two objects):
[
{
"_stream": "netflow",
"timestamp": 1677225660000,
"sessionId": 1727,
"clientIp": "172.16.70.220",
"serverIp": "172.16.10.11",
"protocol": 6,
"clientPort": 60236,
"serverPort": 49666,
"application": 49666,
"exporterIps": [
"172.16.100.1"
],
"interfaces": [
"172.16.100.1[58]",
"172.16.100.1[5]"
],
"clientFunction": [
"Workstations"
],
"serverFunction": [
"Workstations"
],
"clientLocation": [],
"serverLocation": [],
"clientRole": [],
"serverRole": [],
"clientTcpFlags": 0,
"serverTcpFlags": 0,
"tosNumbers": [],
"mpls": [],
"asNumbers": [],
"icmpType": [],
"clientCountry": null,
"serverCountry": null,
"clientAsNumber": null,
"serverAsNumber": null,
"activeTime": 92,
"firstTimestamp": 1677225416260,
"lastTimestamp": 1677225416352,
"clientBytes": 3756,
"serverBytes": 1878,
"clientPackets": 10,
"serverPackets": 9,
"flows": 2,
"customField1036": null
},
{
"_stream": "netflow",
"timestamp": 1677225660000,
"sessionId": 1729,
"clientIp": "172.16.20.75",
"serverIp": "8.253.186.44",
"protocol": 6,
"clientPort": 51310,
"serverPort": 80,
"application": 80,
"exporterIps": [
"172.16.100.1"
],
"interfaces": [
"172.16.100.1[3]",
"172.16.100.1[5]"
],
"clientFunction": [
"Workstations"
],
"serverFunction": [],
"clientLocation": [],
"serverLocation": [],
"clientRole": [],
"serverRole": [],
"clientTcpFlags": 0,
"serverTcpFlags": 0,
"tosNumbers": [],
"mpls": [],
"asNumbers": [],
"icmpType": [],
"clientCountry": null,
"serverCountry": null,
"clientAsNumber": null,
"serverAsNumber": null,
"activeTime": 121156,
"firstTimestamp": 1677225274816,
"lastTimestamp": 1677225395972,
"clientBytes": 80,
"serverBytes": 40,
"clientPackets": 2,
"serverPackets": 1,
"flows": 2,
"customField1036": null
}
...
]
- Select only those objects in which the
clientIp
field contains the current value ip4 or ip6.
| isIp(clientIp)
- Calculate the number of objects for each client ip.
| aggr countClientIp=count(clientIp) by clientIp as client unwind=true
Result (first three values):
[
{
"countClientIp": 542,
"client": "172.16.70.220"
},
{
"countClientIp": 925,
"client": "172.16.20.75"
},
{
"countClientIp": 2139,
"client": "172.16.20.141"
}
...
]
Sort the results from the largest value of
countClientIp
.Select the first 5 objects from the result.
Result:
[
{
"countClientIp": 15744,
"client": "172.16.70.36"
},
{
"countClientIp": 12255,
"client": "172.16.60.107"
},
{
"countClientIp": 6888,
"client": "172.16.10.11"
},
{
"countClientIp": 4520,
"client": "172.16.70.108"
},
{
"countClientIp": 3777,
"client": "172.16.20.59"
}
]
Example 6 (real data from the network)
Scenario
Display ten protocols with the highest network traffic.
NQL Query
src stream="netflowByProtocolAggr"
| aggr sumClientBytes=sum(clientBytes),sumServerBytes=sum(serverBytes),sumClientPackets=sum(clientPackets),sumServerPackets=sum(serverPackets),sumFlows=sum(flows) by protocol as protocolName unwind=true
| set _sumBytes1=add(sumClientBytes,sumServerBytes),_sumClientBitsPerSecond4=div(mul(sumClientBytes,8),60),_sumServerBitsPerSecond5=div(mul(sumServerBytes,8),60),_sumPacketsPerSecond6=div(add(sumClientPackets,sumServerPackets),60),_sumFlowsPerSecond7=div(sumFlows, 60)
| fork (aggr _sumBytes1=sum(_sumBytes1), _sumClientBytes2=sum(sumClientBytes), _sumServerBytes3=sum(sumServerBytes), _sumClientBitsPerSecond4=sum(_sumClientBitsPerSecond4),_sumServerBitsPerSecond5=sum(_sumServerBitsPerSecond5), _sumPacketsPerSecond6=sum(_sumPacketsPerSecond6), _sumFlowsPerSecond7=sum(_sumFlowsPerSecond7), total=count(1) | set protocolName="Total", _isTotalRow=true), (sort _sumBytes1 desc | limit 10)
Description
Below is a step-by-step explanation of the NQL Query.
- Select the data from the
netflowByProtocolAggr
stream.
src stream="netflowByProtocolAggr"
Result:
[
{
"_stream": "netflowByProtocolAggr",
"timestamp": 1677196980000,
"protocol": 17,
"tenantId": 1284495119,
"activeTime": 14978853,
"clientBytes": 44116491,
"serverBytes": 160063,
"clientPackets": 117479,
"serverPackets": 1045,
"flows": 1566,
"sessions": 676
},
{
"_stream": "netflowByProtocolAggr",
"timestamp": 1677196980000,
"protocol": 1,
"tenantId": 1284495119,
"activeTime": 1120484,
"clientBytes": 1228,
"serverBytes": 399559,
"clientPackets": 23,
"serverPackets": 1263,
"flows": 112,
"sessions": 23
},
{
"_stream": "netflowByProtocolAggr",
"timestamp": 1677196980000,
"protocol": 2,
"tenantId": 1284495119,
"activeTime": 79982,
"clientBytes": 0,
"serverBytes": 1224,
"clientPackets": 0,
"serverPackets": 34,
"flows": 2,
"sessions": 1
}
]
Calculate the sum of the values of the
clientBytes
,serverBytes
,clientPackets
andserverPackets
fields for each protocol.Set
unwind=true
then the value of theprotocol
field will be in the resulting object in theprotocolName
field, otherwise the value will be returned in the_id:[<protocol>]
field.
| aggr sumClientBytes=sum(clientBytes),
sumServerBytes=sum(serverBytes),
sumClientPackets=sum(clientPackets),
sumServerPackets=sum(serverPackets),
sumFlows=sum(flows)
by protocol as protocolName unwind=true
Result:
[
{
"protocolName": 17,
"sumClientBytes": 27629261045,
"sumServerBytes": 200320556,
"sumClientPackets": 73431273,
"sumServerPackets": 736372,
"sumFlows": 787521
},
{
"protocolName": 1,
"sumClientBytes": 771406,
"sumServerBytes": 210319829,
"sumClientPackets": 13398,
"sumServerPackets": 706733,
"sumFlows": 63849
},
{
"protocolName": 2,
"sumClientBytes": 0,
"sumServerBytes": 227536,
"sumClientPackets": 0,
"sumServerPackets": 6318,
"sumFlows": 491
},
{
"protocolName": 6,
"sumClientBytes": 1873217764,
"sumServerBytes": 11520014000,
"sumClientPackets": 16168561,
"sumServerPackets": 9237395,
"sumFlows": 884914
},
{
"protocolName": 58,
"sumClientBytes": 0,
"sumServerBytes": 192648,
"sumClientPackets": 0,
"sumServerPackets": 3514,
"sumFlows": 765
}
]
- Add fields whose values are the result of the following arithmetic expressions:
_sumBytes1 = sumClientBytes + sumServerBytes
_sumClientBitsPerSecond4 = (sumClientBytes * 8) / 60
_sumServerBitsPerSecond5 = (sumServerBytes * 8) / 60
_sumPacketsPerSecond6 = (sumClientPackets + sumServerPackets) / 60
_sumFlowsPerSecond7 = sumFlows / 60
_sumFlowsPerSecond7 = sumFlows / 60
| set _sumBytes1=add(sumClientBytes,sumServerBytes),
_sumClientBitsPerSecond4=div(mul(sumClientBytes,8),60),
_sumServerBitsPerSecond5=div(mul(sumServerBytes,8),60),
_sumPacketsPerSecond6=div(add(sumClientPackets,sumServerPackets),60),
_sumFlowsPerSecond7=div(sumFlows, 60)
Result:
[
{
"protocolName": 17,
"sumClientBytes": 27629261045,
"sumServerBytes": 200320556,
"sumClientPackets": 73431273,
"sumServerPackets": 736372,
"sumFlows": 787521,
"_sumBytes1": 27829581601,
"_sumClientBitsPerSecond4": 3683901472.6666665,
"_sumServerBitsPerSecond5": 26709407.466666665,
"_sumPacketsPerSecond6": 1236127.4166666667,
"_sumFlowsPerSecond7": 13125.35
},
{
"protocolName": 1,
"sumClientBytes": 771406,
"sumServerBytes": 210319829,
"sumClientPackets": 13398,
"sumServerPackets": 706733,
"sumFlows": 63849,
"_sumBytes1": 211091235,
"_sumClientBitsPerSecond4": 102854.13333333333,
"_sumServerBitsPerSecond5": 28042643.866666667,
"_sumPacketsPerSecond6": 12002.183333333332,
"_sumFlowsPerSecond7": 1064.15
},
{
"protocolName": 2,
"sumClientBytes": 0,
"sumServerBytes": 227536,
"sumClientPackets": 0,
"sumServerPackets": 6318,
"sumFlows": 491,
"_sumBytes1": 227536,
"_sumClientBitsPerSecond4": 0.0,
"_sumServerBitsPerSecond5": 30338.133333333335,
"_sumPacketsPerSecond6": 105.3,
"_sumFlowsPerSecond7": 8.183333333333334
},
{
"protocolName": 6,
"sumClientBytes": 1873217764,
"sumServerBytes": 11520014000,
"sumClientPackets": 16168561,
"sumServerPackets": 9237395,
"sumFlows": 884914,
"_sumBytes1": 13393231764,
"_sumClientBitsPerSecond4": 249762368.53333333,
"_sumServerBitsPerSecond5": 1536001866.6666667,
"_sumPacketsPerSecond6": 423432.6,
"_sumFlowsPerSecond7": 14748.566666666668
},
{
"protocolName": 58,
"sumClientBytes": 0,
"sumServerBytes": 192648,
"sumClientPackets": 0,
"sumServerPackets": 3514,
"sumFlows": 765,
"_sumBytes1": 192648,
"_sumClientBitsPerSecond4": 0.0,
"_sumServerBitsPerSecond5": 25686.4,
"_sumPacketsPerSecond6": 58.56666666666667,
"_sumFlowsPerSecond7": 12.75
}
]
- Show results.
Show ten aggregation results by protocol from the highest value of the sum of the
sumClientBytes
and sumServerBytes
fields and one object containing all the summed values (total) of the fields
_sumBytes1, sumClientBytes, sumServerBytes, _sumClientBitsPerSecond4, _sumServerBitsPerSecond5 and _sumPacketsPerSecond6, _sumFlowsPerSecond7
.
| fork (aggr _sumBytes1=sum(_sumBytes1),
_sumClientBytes2=sum(sumClientBytes),
_sumServerBytes3=sum(sumServerBytes),
_sumClientBitsPerSecond4=sum(_sumClientBitsPerSecond4),
_sumServerBitsPerSecond5=sum(_sumServerBitsPerSecond5),
_sumPacketsPerSecond6=sum(_sumPacketsPerSecond6),
_sumFlowsPerSecond7=sum(_sumFlowsPerSecond7),
total=count(1) | set protocolName="Total", _isTotalRow=true), (sort _sumBytes1 desc | limit 10)
Result:
The first object in the following list (protocolName: Total
) contains a summary (total) of values.
[
{
"_sumBytes1": 41572536009,
"_sumClientBytes2": 29606497335,
"_sumServerBytes3": 11966038674,
"_sumClientBitsPerSecond4": 3947532978,
"_sumServerBitsPerSecond5": 1595471823.2,
"_sumPacketsPerSecond6": 1678277.1666666667,
"_sumFlowsPerSecond7": 29062.8,
"total": 5,
"protocolName": "Total",
"_isTotalRow": true
},
{
"protocolName": 17,
"sumClientBytes": 27719053914,
"sumServerBytes": 201911191,
"sumClientPackets": 73654716,
"sumServerPackets": 742475,
"sumFlows": 789663,
"_sumBytes1": 27920965105,
"_sumClientBitsPerSecond4": 3695873855.2,
"_sumServerBitsPerSecond5": 26921492.133333333,
"_sumPacketsPerSecond6": 1239953.1833333333,
"_sumFlowsPerSecond7": 13161.05
},
{
"protocolName": 6,
"sumClientBytes": 1886667955,
"sumServerBytes": 11552918926,
"sumClientPackets": 16300918,
"sumServerPackets": 9267241,
"sumFlows": 888874,
"_sumBytes1": 13439586881,
"_sumClientBitsPerSecond4": 251555727.33333334,
"_sumServerBitsPerSecond5": 1540389190.1333334,
"_sumPacketsPerSecond6": 426135.98333333334,
"_sumFlowsPerSecond7": 14814.566666666668
},
{
"protocolName": 1,
"sumClientBytes": 775466,
"sumServerBytes": 210788181,
"sumClientPackets": 13425,
"sumServerPackets": 708019,
"sumFlows": 63973,
"_sumBytes1": 211563647,
"_sumClientBitsPerSecond4": 103395.46666666666,
"_sumServerBitsPerSecond5": 28105090.8,
"_sumPacketsPerSecond6": 12024.066666666668,
"_sumFlowsPerSecond7": 1066.2166666666667
},
{
"protocolName": 2,
"sumClientBytes": 0,
"sumServerBytes": 227536,
"sumClientPackets": 0,
"sumServerPackets": 6318,
"sumFlows": 491,
"_sumBytes1": 227536,
"_sumClientBitsPerSecond4": 0.0,
"_sumServerBitsPerSecond5": 30338.133333333335,
"_sumPacketsPerSecond6": 105.3,
"_sumFlowsPerSecond7": 8.183333333333334
},
{
"protocolName": 58,
"sumClientBytes": 0,
"sumServerBytes": 192840,
"sumClientPackets": 0,
"sumServerPackets": 3518,
"sumFlows": 767,
"_sumBytes1": 192840,
"_sumClientBitsPerSecond4": 0.0,
"_sumServerBitsPerSecond5": 25712.0,
"_sumPacketsPerSecond6": 58.63333333333333,
"_sumFlowsPerSecond7": 12.783333333333333
}
]
Example 7 (real data from the network)
Scenario
Show the average amount of network traffic in bytes for each country in 3-hour time frames.
NQL Query
src stream ="netflowByCountryAggr"
| set sumClientBytesAndServerBytes = add(clientBytes, serverBytes)
| timeAggr dcCountry0=dc(country),avgSumClientBytesAndServerBytes=avg(sumClientBytesAndServerBytes),countries=join(country), mintimestamp=min(timestamp),maxtimestamp=max(timestamp) on timestamp interval="3h"
| set timestampStr=tsToStr(_bucket),mintimestampStr=tsToStr(mintimestamp),maxtimestampStr=tsToStr(maxtimestamp)
| project -dcCountry0, -mintimestamp, -maxtimestamp, -_bucket
Description
Below is a step-by-step explanation of the NQL Query.
- Select the data from the
netflowByCountryAggr
stream and calculate the sum ofclientBytes + serverBytes
src stream ="netflowByCountryAggr" | set sumClientBytesAndServerBytes = add(clientBytes, serverBytes)
Result:
[
{
"_stream": "netflowByCountryAggr",
"timestamp": 1677196800000,
"country": "DE",
"tenantId": 1284495119,
"direction": 0,
"activeTime": 439550000,
"clientBytes": 382021135,
"serverBytes": 379897485,
"clientPackets": 1487888,
"serverPackets": 1479586,
"flows": 35164,
"sessions": 8791,
"sumClientBytesAndServerBytes": 761918620
},
{
"_stream": "netflowByCountryAggr",
"timestamp": 1677196800000,
"country": "SE",
"tenantId": 1284495119,
"direction": 0,
"activeTime": 732700000,
"clientBytes": 640053594,
"serverBytes": 638382685,
"clientPackets": 2492900,
"serverPackets": 2486417,
"flows": 58614,
"sessions": 14654,
"sumClientBytesAndServerBytes": 1278436279
},
{
"_stream": "netflowByCountryAggr",
"timestamp": 1677196800000,
"country": "DK",
"tenantId": 1284495119,
"direction": 0,
"activeTime": 88827750000,
"clientBytes": 77620570054,
"serverBytes": 77625811592,
"clientPackets": 302319389,
"serverPackets": 302339738,
"flows": 7106172,
"sessions": 1776555,
"sumClientBytesAndServerBytes": 155246381646
},
...
]
- Calculate the average value over a 3-hour interval and save it to the
avgSumClientBytesAndServerBytes
variable.
In addition, the data from the country field is combined, so as to show a list of countries in a given time interval (countries
variable) and the beginning and end of a given time interval (mintimestamp, maxtimestamp
variables).
| timeAggr dcCountry0=dc(country),
avgSumClientBytesAndServerBytes=avg(sumClientBytesAndServerBytes),
sum1 = sum(sumClientBytesAndServerBytes),
countries=join(country),
mintimestamp=min(timestamp),
maxtimestamp=max(timestamp)
on timestamp interval="3h"
Result:
[
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643487893.42223,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,...",
"mintimestamp": 1677196800000,
"maxtimestamp": 1677207540000,
"_bucket": 1677196800000
},
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643537084.8361,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,...",
"mintimestamp": 1677207600000,
"maxtimestamp": 1677218340000,
"_bucket": 1677207600000
},
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643425062.48611,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,...",
"mintimestamp": 1677218400000,
"maxtimestamp": 1677229140000,
"_bucket": 1677218400000
},
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643393605.52942,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,...",
"mintimestamp": 1677229200000,
"maxtimestamp": 1677231180000,
"_bucket": 1677229200000
}
]
- Convert variables containing a
timestamp
value to a readable text value.
| set timestampStr=tsToStr(_bucket),
mintimestampStr=tsToStr(mintimestamp),
maxtimestampStr=tsToStr(maxtimestamp)
Result:
[
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643487893.42223,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,...",
"mintimestamp": 1677196800000,
"maxtimestamp": 1677207540000,
"_bucket": 1677196800000,
"timestampStr": "2023-02-24 00:00:00.000",
"mintimestampStr": "2023-02-24 00:00:00.000",
"maxtimestampStr": "2023-02-24 02:59:00.000"
},
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643537084.8361,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,...",
"mintimestamp": 1677207600000,
"maxtimestamp": 1677218340000,
"_bucket": 1677207600000,
"timestampStr": "2023-02-24 03:00:00.000",
"mintimestampStr": "2023-02-24 03:00:00.000",
"maxtimestampStr": "2023-02-24 05:59:00.000"
},
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643425062.48611,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,...",
"mintimestamp": 1677218400000,
"maxtimestamp": 1677229140000,
"_bucket": 1677218400000,
"timestampStr": "2023-02-24 06:00:00.000",
"mintimestampStr": "2023-02-24 06:00:00.000",
"maxtimestampStr": "2023-02-24 08:59:00.000"
},
{
"dcCountry0": 4,
"avgSumClientBytesAndServerBytes": 78643404454.77777,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,...",
"mintimestamp": 1677229200000,
"maxtimestamp": 1677231300000,
"_bucket": 1677229200000,
"timestampStr": "2023-02-24 09:00:00.000",
"mintimestampStr": "2023-02-24 09:00:00.000",
"maxtimestampStr": "2023-02-24 09:35:00.000"
}
]
- Remove the fields you do not want to display from the result .
| project -dcCountry0, -mintimestamp, -maxtimestamp, -_bucket
Result:
[
{
"avgSumClientBytesAndServerBytes": 78643487893.42223,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,DE,SE,...",
"timestampStr": "2023-02-24 00:00:00.000",
"mintimestampStr": "2023-02-24 00:00:00.000",
"maxtimestampStr": "2023-02-24 02:59:00.000"
},
{
"avgSumClientBytesAndServerBytes": 78643537084.8361,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,DE,SE,...",
"timestampStr": "2023-02-24 03:00:00.000",
"mintimestampStr": "2023-02-24 03:00:00.000",
"maxtimestampStr": "2023-02-24 05:59:00.000"
},
{
"avgSumClientBytesAndServerBytes": 78643425062.48611,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,DE,SE,...",
"timestampStr": "2023-02-24 06:00:00.000",
"mintimestampStr": "2023-02-24 06:00:00.000",
"maxtimestampStr": "2023-02-24 08:59:00.000"
},
{
"avgSumClientBytesAndServerBytes": 78643408233.22368,
"countries": "DE,SE,DK,US,DE,SE,DK,US,DE,SE,DK,US,DE,SE,...",
"timestampStr": "2023-02-24 09:00:00.000",
"mintimestampStr": "2023-02-24 09:00:00.000",
"maxtimestampStr": "2023-02-24 09:37:00.000"
}
]
Example 8 (real data from the network)
Scenario
Threats Trajectory for most suspicious IPs.
NQL Query
src stream="alerts"
| valInColl(clientIp, "top10ClientIpLast15Minute_Alerts", "clientIp")
| splitAggr countAlertName0=count(alertName)
(timeAggr on timestamp interval="1m" dir="desc" bucketAlias="srcEventTimestamp"),
(aggr by clientIp as clientIp unwind=true maxBuckets=20) unwind=true
| sort countAlertName0 desc
| limit 480
Description
Below is a step-by-step explanation of the NQL Query.
- Select the data from the
alerts
stream and take only those objects which have an entry in thetop10ClientIpLast15Minute_Alerts
collector for client IP value.
src stream="alerts"
| valInColl(clientIp, "top10ClientIpLast15Minute_Alerts", "clientIp")
Result:
[
{
"id": "61c43b97-0e06e7a1-3e17bce1",
"timestamp": 1679616180000,
"alertName": "Brute Force Attack",
"alertSeverity": "Medium",
"alertRuleType": "Security",
"alertTags": [
"60143f92-3f2b5b74-c234033d",
"60143f92-3f2b5b74-c2340327"
],
"alertRuleId": "Credential Access_015",
"alertFlagThresholdLevel": "Critical",
"alertSeen": false,
"alertFalsePositive": false,
"alertComment": null,
"alertMitreTactic": "Credential Access",
"alertMitreTechnique": "Brute Force",
"alertMitreId": "T1110",
"alertMitreSubtechnique": null,
"alertDefId": "61a869fa-825ce206-718d6533",
"alertAckUser": null,
"alertAckLastUpdate": null,
"alertFalsePositiveUser": null,
"alertFalsePositiveLastUpdate": null,
"alertCommentUser": null,
"alertCommentLastUpdate": null,
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "172.16.60.31",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.70.243",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [
"Workstations"
],
"clientIp": "172.16.70.243",
"serverIp": "172.16.60.31",
"_clientIp": "172.16.70.243",
"_countSessions": 949,
"_firstServerIp": "172.16.60.31",
"_firstClientAsn": null,
"_firstServerAsn": null
},
{
"id": "61c43b97-0e06e7a1-3e17bce3",
"timestamp": 1679616180000,
"alertName": "Brute Force Attack 2",
"alertSeverity": "Medium",
"alertRuleType": "Security",
"alertTags": [
"60143f92-3f2b5b74-c234033d",
"60143f92-3f2b5b74-c2340327"
],
"alertRuleId": "Credential Access_019",
"alertFlagThresholdLevel": "Critical",
"alertSeen": false,
"alertFalsePositive": false,
"alertComment": null,
"alertMitreTactic": "Credential Access",
"alertMitreTechnique": "Brute Force",
"alertMitreId": "T1110",
"alertMitreSubtechnique": null,
"alertDefId": "61a739be-037e4715-be7c2dcf",
"alertAckUser": null,
"alertAckLastUpdate": null,
"alertFalsePositiveUser": null,
"alertFalsePositiveLastUpdate": null,
"alertCommentUser": null,
"alertCommentLastUpdate": null,
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "172.16.60.31",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.70.243",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [
"Workstations"
],
"clientIp": "172.16.70.243",
"serverIp": "172.16.60.31",
"_clientIp": "172.16.70.243",
"_countSessions": 949,
"_firstServerIp": "172.16.60.31",
"_firstClientAsn": null,
"_firstServerAsn": null
},
...
]
- Calculate the number of alerts in groups by time bucket
1m
(one month) andclientIp
value.
| splitAggr countAlertName0=count(alertName)
(timeAggr on timestamp interval="1m" dir="desc" bucketAlias="srcEventTimestamp"),
(aggr by clientIp as clientIp unwind=true maxBuckets=20) unwind=true
2.1. Calculate the number of alerts in 1m
time range buckets.
| splitAggr countAlertName0=count(alertName)
(timeAggr on timestamp interval="1m" dir="desc" bucketAlias="srcEventTimestamp")
Result:
[
{
"countAlertName0": 2,
"srcEventTimestamp": 1679644920000
},
{
"countAlertName0": 2,
"srcEventTimestamp": 1679644860000
},
...
]
2.2. Calculate the number of alerts in clientIp
groups.
| splitAggr countAlertName0=count(alertName)
(aggr by clientIp as clientIp unwind=true maxBuckets=20) unwind=true
Result:
[
{
"countAlertName0": 166,
"clientIp": "172.16.70.243"
},
{
"countAlertName0": 35,
"clientIp": "172.16.42.30"
},
{
"countAlertName0": 28,
"clientIp": "110.78.211.84"
}
]
Result for splitAggr
:
[
{
"countAlertName0": 2,
"clientIp": "172.16.70.243",
"srcEventTimestamp": 1679644620000
},
{
"countAlertName0": 2,
"clientIp": "172.16.70.243",
"srcEventTimestamp": 1679644500000
},
{
"countAlertName0": 2,
"clientIp": "172.16.70.243",
"srcEventTimestamp": 1679644380000
},
...
]
- Sort the objects by the number of alerts and show the first 480 objects
| sort countAlertName0 desc
| limit 480
Result:
[
{
"countAlertName0": 2,
"clientIp": "172.16.70.243",
"srcEventTimestamp": 1679644680000
},
{
"countAlertName0": 2,
"clientIp": "172.16.70.243",
"srcEventTimestamp": 1679644620000
},
{
"countAlertName0": 2,
"clientIp": "172.16.70.243",
"srcEventTimestamp": 1679644500000
},
...
]
Example 9 (real data from the network)
Scenario
A rule detects a brute force/dictionary attack on specific applications (FTP, HTTPS, HTTP, IMAP, RDP, SSH, IMAP3, LDAP, LDAPS, MYSQL, POP3, POP3S, POSTGRESQL, SMTP, TELNET, TFTP, ASTERISK, VNC, SNMP, MSSQL, SMB, ICQ, NNTP, PCANYWHERE, ORACLELISTENER, SVN, XMPP, SIP, RADMIN2, REXEC, RLOGIN, WS - Management and PowerShell remoting via HTTP, WS - Management and PowerShell remoting via HTTPS, RPCAP, NetBIOS, Kerberos) from a single IP address to the same host.
NQL Query
src stream="netflow"
| in(serverPort,[21,22,23,25,69,80,88,110,119,139,143,161,220,389,443,445,512,513,636,995,1433,1521,2002,3306,3389,3690,4000,4899,5038,5060,5222,5432,5631,5900,5985,5986,6667])
| aggr _countSessions=count(timestamp),
_clientIp=first(clientIp),
_firstClientCountry=first(clientCountry),
_firstClientFunction=first(clientFunction),
_serverIp=first(serverIp),
_firstServerCountry=first(serverCountry),
_firstServerFunction=first(serverFunction),
_firstClientIp=first(clientIp),
_firstServerIp=first(serverIp),
_firstServerPort=first(serverPort) by clientIp as clientIp, serverIp as serverIp, serverPort as serverPort unwind=true
| sort _countSessions desc
| limit 100
| set _firstClientAsn=lookup("ip-as","name", {"ip": _clientIp} ), _firstServerAsn=lookup("ip-as","name", {"ip": _serverIp} )
| limit 1000
Description
Below is a step-by-step explanation of the NQL Query.
- Select objects from the
netflow
stream for which the value of theserverPort
field is on the list:21,22,23,25,69,80,88,110,119,139,143,161,220,389,443,445,512,513,636,995,1433,1521,2002,3306,3389,3690,4000,4899,5038,5060,5222,5432,5631,5900,5985,5986,6667
.
src stream="netflow"
| in(serverPort,[21,22,23,25,69,80,88,110,119,139,143,161,220,389,443,445,512,513,636,995,1433,1521,2002,3306,3389,3690,4000,4899,5038,5060,5222,5432,5631,5900,5985,5986,6667])
Result:
[
{
"_stream": "netflow",
"timestamp": 1677603840000,
"sessionId": 1,
"clientIp": "172.16.60.107",
"serverIp": "172.105.8.229",
"protocol": 6,
"clientPort": 44276,
"serverPort": 443,
"application": 443,
"exporterIps": [
"172.16.100.1"
],
"interfaces": [
"172.16.100.1[3]",
"172.16.100.1[5]"
],
"clientFunction": [
"Workstations"
],
"serverFunction": [],
"clientLocation": [],
"serverLocation": [],
"clientRole": [],
"serverRole": [],
"clientTcpFlags": 0,
"serverTcpFlags": 0,
"tosNumbers": [],
"mpls": [],
"asNumbers": [],
"icmpType": [],
"clientCountry": null,
"serverCountry": null,
"clientAsNumber": null,
"serverAsNumber": null,
"activeTime": 1368,
"firstTimestamp": 1677603559044,
"lastTimestamp": 1677603560436,
"clientBytes": 1622,
"serverBytes": 25892,
"clientPackets": 15,
"serverPackets": 25,
"flows": 4
},
{
"_stream": "netflow",
"timestamp": 1677603840000,
"sessionId": 3,
"clientIp": "172.16.20.141",
"serverIp": "52.97.229.210",
"protocol": 6,
"clientPort": 60297,
"serverPort": 443,
"application": 443,
"exporterIps": [
"172.16.100.1"
],
"interfaces": [
"172.16.100.1[4]",
"172.16.100.1[5]"
],
"clientFunction": [
"Workstations"
],
"serverFunction": [],
"clientLocation": [],
"serverLocation": [],
"clientRole": [],
"serverRole": [],
"clientTcpFlags": 0,
"serverTcpFlags": 0,
"tosNumbers": [],
"mpls": [],
"asNumbers": [],
"icmpType": [],
"clientCountry": null,
"serverCountry": null,
"clientAsNumber": null,
"serverAsNumber": null,
"activeTime": 43948,
"firstTimestamp": 1677603524348,
"lastTimestamp": 1677603568296,
"clientBytes": 40,
"serverBytes": 1273,
"clientPackets": 1,
"serverPackets": 3,
"flows": 2
},
...
]
- Select the first values of the
_clientIp, _firstClientCountry, _firstClientFunction, _serverIp, _firstServerCountry, _firstServerFunction, _firstClientIp, _firstServerIp, _firstServerPort
fields for the givenclientIp, serverIp
iserverPort
groups and the calculation of the number of objects in these groups (_countSessions
).
| aggr _countSessions=count(timestamp),
_clientIp=first(clientIp),
_firstClientCountry=first(clientCountry),
_firstClientFunction=first(clientFunction),
_serverIp=first(serverIp),
_firstServerCountry=first(serverCountry),
_firstServerFunction=first(serverFunction),
_firstClientIp=first(clientIp),
_firstServerIp=first(serverIp),
_firstServerPort=first(serverPort) by clientIp as clientIp, serverIp as serverIp, serverPort as serverPort unwind=true
Result:
[
{
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "172.105.8.229",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.60.107",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [],
"clientIp": "172.16.60.107",
"serverIp": "172.105.8.229",
"_clientIp": "172.16.60.107",
"_countSessions": 4,
"_firstServerIp": "172.105.8.229"
},
{
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "52.97.229.210",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.20.141",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [],
"clientIp": "172.16.20.141",
"serverIp": "52.97.229.210",
"_clientIp": "172.16.20.141",
"_countSessions": 19,
"_firstServerIp": "52.97.229.210"
},
...
]
- Sort the results by the
_countSessions
field in descending order and select the first 100 objects.
| sort _countSessions desc
| limit 100
Result:
[
{
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "209.206.5.62",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.10.76",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [],
"clientIp": "172.16.10.76",
"serverIp": "209.206.5.62",
"_clientIp": "172.16.10.76",
"_countSessions": 223,
"_firstServerIp": "209.206.5.62"
},
{
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "52.113.194.132",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.43.38",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [],
"clientIp": "172.16.43.38",
"serverIp": "52.113.194.132",
"_clientIp": "172.16.43.38",
"_countSessions": 146,
"_firstServerIp": "52.113.194.132"
},
...
]
- Add the
_firstClientAsn
and_firstServerAsn
fields whose values are selected from theip-as
andip-as
files (lookups), from thename
field for conditions:ip=_clientIp
orazip=_serverIp
. Get the first 1000 objects.
| set _firstClientAsn=lookup("ip-as","name", {"ip": _clientIp} ), _firstServerAsn=lookup("ip-as","name", {"ip": _serverIp} )
| limit 1000
Result:
[
{
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "209.206.5.62",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.10.76",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [],
"clientIp": "172.16.10.76",
"serverIp": "209.206.5.62",
"_clientIp": "172.16.10.76",
"_countSessions": 223,
"_firstServerIp": "209.206.5.62",
"_firstClientAsn": 23456,
"_firstServerAsn": 65535
},
{
"_firstServerCountry": null,
"serverPort": 443,
"_serverIp": "52.113.194.132",
"_firstServerPort": 443,
"_firstClientCountry": null,
"_firstClientIp": "172.16.43.38",
"_firstClientFunction": [
"Workstations"
],
"_firstServerFunction": [],
"clientIp": "172.16.43.38",
"serverIp": "52.113.194.132",
"_clientIp": "172.16.43.38",
"_countSessions": 146,
"_firstServerIp": "52.113.194.132",
"_firstClientAsn": 131072,
"_firstServerAsn": 64512
},
...
]